When is the Uvarov transformation positive definite?

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cicchetti-Allison weighting matrix is positive definite

Application of Cohen’s weighted kappa for inter-rater agreement requires the specification of a weighting matrix. An explicit formula for the determinants of the principal minors of the weighting matrix with Cicchetti–Allison weights is derived. Since all determinants are strictly positive, it follows that the Cicchetti–Allison weighting matrix is positive definite. © 2012 Elsevier B.V. All rig...

متن کامل

The optimal assignment kernel is not positive definite

We prove that the optimal assignment kernel, proposed recently as an attempt to embed labeled graphs and more generally tuples of basic data to a Hilbert space, is in fact not always positive definite.

متن کامل

Positive Definite Rational Kernels

Kernel methods are widely used in statistical learning techniques. We recently introduced a general kernel framework based on weighted transducers or rational relations, rational kernels, to extend kernel methods to the analysis of variable-length sequences or more generally weighted automata. These kernels are efficient to compute and have been successfully used in applications such as spoken-...

متن کامل

Positive Definite and Semi-definite Splitting Methods for Non-hermitian Positive Definite Linear Systems

In this paper, we further generalize the technique for constructing the normal (or positive definite) and skew-Hermitian splitting iteration method for solving large sparse nonHermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove th...

متن کامل

Certain Positive-definite Kernels

In one way or another, the extension of the standard Brownian motion process {B¡: t e [0,oo)} to a (Gaussian) random field {Bt: t € R+} involves a proof of the positive semi-definiteness of the kernel used to generalize p(s, 1) = cov(Bs,B¡) = s A t to multidimensional time. Simple direct analytical proofs are provided here for the cases of (i) the Levy multiparameter Brownian motion, (ii) the C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algorithms

سال: 2011

ISSN: 1017-1398,1572-9265

DOI: 10.1007/s11075-011-9475-4